
Ph.D. QUALIFYING EXAMINATION – PART A 
 

Tuesday, January 12, 2016, 1:00 – 5:00 P.M. 
 
 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.  Some 
students find useful the Schaum’s outlines, ‘Mathematical  Handbook of Formulas and Tables’. 
 
A1. A block of mass M slides 
down a frictionless plane 
inclined at an angle α.  A 
pendulum of length l and 
mass m is suspended from 
mass M as shown in the figure 
(assume that M hangs slightly 
over the edge of the incline so 
the pendulum can hang 
freely).  Find the equations of 
motion and the equilibrium 
position of the pendulum.   

 

A2.  Consider an insulating sphere of charge of radius 
3a and uniform charge density ρ with its center at the 
origin.  There is a spherical hole of radius a with its 
center located on the z axis at 2z a .   

a)  Use Gauss’s Law and the Principle of 
Superposition to find the electric field everywhere on 
the positive z axis (0 )z   .  

 

b)  Determine the electric potential everywhere on the positive z axis (0 )z   .  

 
A3. A space station is orbiting a planet of mass M and radius R in a circular orbit of radius 3R 
(purely under the influence of gravity). The astronauts in the space station shoot a probe towards 
the planet, aiming at its center. What initial speed 0v  (with respect to the space station) do they 

need to give the probe such that it just grazes the surface of the planet? (Gravity between the 
space station and the probe can be neglected.) [Hint: Think about conservation laws.] 
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A4. A particle of mass m is confined to the region x ∈	( a, a) by a one-dimensional infinite 
square well potential of length 2a. It also interacts with a stationary heavy particle located at the 
origin, through a short-range attractive potential V  v₀	δ(x). 

a)  By, e.g., integrating the energy eigenvalue equation across the delta function, show that any 
energy eigenfunction ϕ(x) for this system that does not vanish at x = 0 has a discontinuous 
derivative at that point, and determine the magnitude and sign of the discontinuity 

        Δϕ′ = ϕ′(0⁺) ϕ′(0⁻). 

b)  Find the most general form of the solution to the energy eigenvalue equation in the regions to 
the left and to the right of the origin for a "bound-state" of negative energy  
        ε = εB. 

c)  Using the condition derived in part (a), and other appropriate boundary conditions, derive a 
transcendental equation giving the condition under which such a bound state will exist. Show 
(e.g., graphically) that there will exist such a state provided that the strength v₀ of the interaction 
exceeds a critical value, and determine, asymptotically, the binding energy in the limit in which 
v₀ is much larger than that value. 

 

A5.  Consider an idealized Sun and Earth as blackbodies in otherwise empty space. The Sun has 
a surface temperature ௌܶ, and assume that Earth’s surface temperature is uniform. The radius of 
the Earth is ܴா, the radius of the Sun is ܴௌ, and the Earth-Sun distance is ݀. 

(a) Considering only the blackbody radiation from the sun and the earth, determine an expression 
for the temperature of the Earth. 

(b) Determine an expression for the total radiation force and the radiation pressure on the Earth.  

 

A6. a)  For a well with ܸሺݔሻ ൌ 0 for 0 ൏ ݔ ൏ ܽ, and infinite otherwise, derive the normalized 
basis functions ߮௡ሺݔሻ. 
 
b)  What are the eigenenergies ܧ௡ corresponding to the basis functions? 
 
The variational theorem states that for a wave function ߰ሺݔሻ, the expectation value of the energy 
is always greater than or equal to the ground state: 

ൻ߰หܪ෡ห߰ൿ
ۧ߰|߰ۦ

൒  .଴ܧ

c)  Calculate the approximate ground state energy for particle in a box using the trial function 
߰ሺݔሻ ൌ ݔሺݔܣ െ ܽሻ. Normalize the wave function to find ܣ. 
 
d)  Suppose you now want to find an approximate wave function and energy for the first excited 
state. What procedure would you follow? (You do not need to work this out.) 



Ph.D. QUALIFYING  EXAMINATION – PART  B 
 

Wednesday, January 13, 2016, 1:00 – 5:00 p.m. 
 

 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.  Some 
students find useful the Schaum’s outlines’, ‘Mathematical Handbook of Formulas and Tables’. 
 
B1.  Two hobos, each of mass m are standing at one end of a stationary railroad car of mass M.  
The car can move without friction along its tracks.  Either hobo can run to the other end of the 
car and jump off with the same speed u (relative to the car).   

a)  Find the speed of the recoiling car if the two hobos run and jump from the car simultaneously. 

b)  Repeat this exercise for the case where the second hobo begins to run and jump only after the 
first has already jumped.  Which case gives the greater speed to the railroad car?  Hint:  The 
speed u is the speed of either hobo relative to the car just after he has jumped.  It has the same 
value for each hobo, and is the same in both parts (a) and (b).  

 

B2. The three hydrogen atoms of the boron hydride molecule BH₃ lie on the vertices of an 
equilateral triangle with the boron atom at the center. An electron bound to this molecule can 
occupy an orbital on any one of the three hydrogen atoms, in localized quantum states that we 
will denote by |1〉, |2〉, and |3〉. A non-zero positive matrix element J₀ of the Hamiltonian 
connects states centered on different orbitals, so that the effective Hamiltonian can be written  

  H = ε₀	+ J₀	∑
〈n, m〉

  ( | n 〉〈	m | + | m 〉〈	n | ) 

in which the sum is over each distinct pair of atoms. A measurement of the energy of the system 
is taken at a moment when the electron occupies the orbital associated with atom one, i.e. when it 
is in the state |ψ〉	= |1〉. 

a)  What possible values could be obtained in such a measurement? 

b)  What is the probability of finding the electron in its lowest energy state? 

c)  Compute the mean energy 〈H〉 and the statistical uncertainty ΔH associated with an ensemble 
of such measurements. 

 

  



B3.  An ideal monatomic gas of ܰ atoms in a volume ܸ is in thermal equilibrium with the 

temperature ௜ܶ. At ݐ ൌ 0 all atoms with kinetic energy larger than Bk T , i.e., 
ଵ

ଶ
ଶݒ݉ ൐ ஻݇ߙ ௜ܶ, 

are allowed to escape. After that the remaining atoms are assumed to come slowly to a new 
thermal equilibrium at temperature ௙ܶሺߙሻ. During the entire process, the system remains isolated 

from other systems.  Note:  
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(a) Find an expression for the new equilibrium temperature ௙ܶሺߙሻ. 

(b) Derive an expression for ௙ܶሺߙሻ as a function of   for very small ≪ 1 . 

 
 

B4.  A sphere of linear dielectric material with a dielectric constant   is placed in an otherwise 

uniform electric field 0E


. 

a)  Determine the electric potential inside and outside the dielectric sphere. 

b)  Determine the electric field inside the dielectric sphere. 

c)  Determine the induced dipole moment p


 inside the dielectric sphere. 

d)  What is the polarization P


 inside the dielectric sphere. 

Recall that if there is no   dependence, the general solution to Laplace’s equation for the 

potential is given as:  1
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 B5.  Consider a vessel that is divided into two parts by a wall. The left part contains a classical 
ideal gas at temperature T1, the right part contains an ideal gas at temperature T2 with T2 > T1. 
Both gases consist of the same type of particles of mass m, and the pressures left and right are 
identical. Now a small hole of area A is opened in the wall separating the two parts. 
 
a)  Calculate the net particle current through the hole (difference between the numbers of 
particles moving from left to right and vice versa per time). 

 
b)  Calculate the net energy current (energy transported through the hole per time). 
 
[Hint: Think about which particles hit the hole during a time interval t.] 
 
 

 



B6. Electromagnetic waves impinging on a good conductor have the singular characteristic of 
penetrating into the conductor at nearly 90° to its surface regardless of the angle of incidence. 
This makes them an ideal tool to study the structure of a layered material, like the Earth’s 
lithosphere. All that is needed is waves of appropriately low frequencies (for the good–conductor 
approximation to hold). 

a) Use Maxwell’s equations to show that the electric field in the conductor satisfies the diffusion 
equation in this approximation. Assume conductivity , and the driving field outside to be 
sinusoidal; i.e. . The diffusion equation is . Clearly indicate where you 
make use of the approximation.  Recall: 2( ) ( )A A A     

     
 . 

b) Solve the equation by separation of variables assuming ( ) ( )yE f t g z , where t is time and z 
is distance to the surface. The incident wave has amplitude 0E  at the surface. Make sure the 
solution is traveling into the conductor; i.e. select only a traveling wave solution, and one that 
travels in the right direction. Show that the amplitude decreases exponentially with scale length 
, the so–called skin depth, and give an explicit expression for  as a function of both the 
conductivity  and the frequency . 

c) Use Faraday’s Law to find the amplitude of the magnetic field at the surface in term of 0E  and 
. [This shows that  can be obtained from the magnitude of the fields at the surface, and then  
can be determined from  using the expression you obtained in b)]. 

 

 

 


